skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schuman, Meredith_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding ecosystem processes on our rapidly changing planet requires integration across spatial, temporal, and biological scales. We propose that spectral biology, using tools that enable near‐ to far‐range sensing by capturing the interaction of energy with matter across domains of the electromagnetic spectrum, will increasingly enable ecological insights across scales from cells to continents. Here, we focus on advances using spectroscopy in the visible to short‐wave infrared, chlorophyll fluorescence‐detecting systems, and optical laser scanning (light detection and ranging, LiDAR) to introduce the topic and special feature. Remote sensing using these tools, in conjunction with in situ measurements, can powerfully capture ecological and evolutionary processes in changing environments. These tools are amenable to capturing variation in life processes across biological scales that span physiological, evolutionary, and macroecological hierarchies. We point out key areas of spectral biology with high potential to advance understanding and monitoring of ecological processes across scales—particularly at large spatial extents—in the face of rapid global change. These include: the detection of plant and ecosystem composition, diversity, structure, and function as well as their relationships; detection of the causes and consequences of environmental stress, including disease and drought, for ecosystems; and detection of change through time in ecosystems over large spatial extents to discern variation in and mechanisms underlying their resistance, recovery, and resilience in the face of disturbance. We discuss opportunities for spectral biology to discover previously unseen variation and novel processes and to prepare the field of ecology for novel computational tools on the horizon with vast new capabilities for monitoring the ecology of our changing planet. 
    more » « less